Abstract
Plant species could significantly affect the nitrogen removal processes mediated by microorganisms in constructed wetlands. However, the links between nitrogen removal processes in the rhizosphere and the related functional microorganisms in a horizontal surface flow constructed wetland in winter remain poorly understood. In this study we collected 24 rhizosphere soils from Typha orientalis and Phragmites australis to evaluate potential nitrogen removal activities, namely the potential nitrification rate (PNR) and denitrification enzyme activity (DEA), and their relationship with functional genes (i.e. nitrate reductase, nirS, and ammonia mono-oxygenase, amoA, of ammonia-oxidising archaea, AOA, and ammonia-oxidising bacteria, AOB) in denitrifiers and nitrifiers in winter. DEA and PNR were significantly higher in the rhizosphere soil of T. orientalis than P. australis, which was due to the higher abundance of nitrifiers and denitrifiers in the rhizosphere of T. orientalis. AOB were the major predictor of PNR in rhizosphere soil of T. orientalis, whereas AOA were more important for P. australis. In addition, denitrifiers containing the nirS gene were found to be the main drivers of DEA, and AOA and AOB also contributed to the denitrification process in the rhizosphere soil of both plants. Furthermore, the abundance of nitrifiers was significantly affected by the C:N ratio, soil organic matter and moisture, whereas the abundance of denitrifiers was affected by soil moisture and pH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.