Abstract

Dynamic rheological and thermal characteristics of ten Korean acacia honeys with different moisture contents (18.4 to 20.4 percent) were evaluated as a function of moisture content using both a controlled stress rheometer for small-deformation oscillatory measurements and a differential scanning calorimeter (DSC). The honey samples displayed a liquid-like behavior at a subzero temperature (-5°C) with loss modulus (G") predominating over storage modulus (G'), showing a high dependence on frequency. Plots of dynamic moduli (G' and G") and complex viscosity (?*) versus moisture content gave better exponential relationships (R2 = 0.95-0.97) than the tan delta values (R2 = 0.89). Glass transition temperatures at onset (To) showed a better linear relationship (R2 = 0.87) with moisture content compared to those at midpoint (Tm) (R2 = 0.84) and endpoint (Te) (R2 = 0.81). The dynamic rheological parameters more closely correlated with moisture content as compared to the glass transition temperatures, indicating that dynamic rheological measurements at a subzero temperature are better physical parameters to estimate the quality of honeys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.