Abstract

The present study investigated whether blood lactate removal after supramaximal exercise and fatigue indexes measured during continuous and intermittent supramaximal exercises are related to the maximal muscle oxidative capacity in humans with different training status. Lactate recovery curves were obtained after a 1-min all-out exercise. A biexponential time function was then used to determine the velocity constant of the slow phase (gamma(2)), which denoted the blood lactate removal ability. Fatigue indexes were calculated during all-out (FI(AO)) and repeated 10-s cycling sprints (FI(Sprint)). Biopsies were taken from the vastus lateralis muscle, and maximal ADP-stimulated mitochondrial respiration (V(max)) was evaluated in an oxygraph cell on saponin-permeabilized muscle fibers with pyruvate + malate and glutamate + malate as substrates. Significant relationships were found between gamma(2) and pyruvate + malate V(max) (r = 0.60, P < 0.05), gamma(2) and glutamate + malate V(max) (r = 0.66, P < 0.01), and gamma(2) and citrate synthase activity (r = 0.76, P < 0.01). In addition, gamma(2), glutamate + malate V(max), and pyruvate + malate V(max) were related to FI(AO) (gamma(2) - FI(AO): r = 0.85; P < 0.01; glutamate + malate V(max) - FI(AO): r = 0.70, P < 0.01; and pyruvate + malate V(max) - FI(AO): r = 0.63, P < 0.01) and FI(Sprint) (gamma(2) - FI(Sprint): r = 0.74, P < 0.01; glutamate + malate V(max) - FI(Sprint): r = 0.64, P < 0.01; and pyruvate + malate V(max) - FI(Sprint): r = 0.46, P < 0.01). In conclusion, these results suggested that the maximal muscle oxidative capacity was related to blood lactate removal ability after a 1-min all-out test. Moreover, maximal muscle oxidative capacity and blood lactate removal ability were associated with the delay in the fatigue observed during continuous and intermittent supramaximal exercises in well-trained subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call