Abstract

This study investigated relationships that linear speed and lower-body power have on change-of-direction (COD) speed in collegiate women soccer players. Data from two Division I (n = 39) and one Division II (n = 18) schools were analyzed. Subjects were assessed in: power (vertical jump (VJ); jump height, peak anaerobic power measured in watts (PAPw), power-to-body mass ratio (P:BM); linear speed (10-m sprint); and COD speed (modified T-test (MTT), 505, COD deficit). Independent samples T-tests derived significant between-group differences, with effect sizes (d) calculated. Pearson’s correlations determined relationships between COD speed, linear speed, and power, with regression equations calculated. Division I players demonstrated superior 505, COD deficit, VJ height, PAPw, and P:BM (d = 1.09–2.21). Division II players were faster in the MTT (d = 1.51). For all players, the 505 correlated with the 10-m sprint (r = 0.39–0.53) and VJ height (r = −0.65–0.66), while the COD deficit related to the 10-m sprint (r = −0.77–0.82). The regression data supported these results. Division I players were superior in the 505 and COD deficit, and expressed their power in the 180° 505 task. Division II players should enhance lower-body power and the ability to perform 180° direction changes.

Highlights

  • Soccer is one of the most popular sports for women at the collegiate level [1], yet there has been relatively little analysis of these athletes [2,3,4,5,6,7,8]

  • The National Collegiate Athletic Association (NCAA) Division I players were significantly older than the Division II players

  • In regard to COD speed, Division I players performed significantly better on the 505, and displayed a lower COD Deficit when compared to DII players

Read more

Summary

Introduction

Soccer is one of the most popular sports for women at the collegiate level [1], yet there has been relatively little analysis of these athletes [2,3,4,5,6,7,8]. Soccer places great demands on a number of physiological capacities, as players need to demonstrate high aerobic and anaerobic fitness, the ability to sprint, jump, change direction, and complete sport-specific skills such as dribbling, passing, and shooting the ball [9,10]. Change-of-direction (COD) speed is the physical component of agility, which encompasses technique, lower-body power, and the ability to effectively decelerate and accelerate [11]. This quality can help dictate performance success, due to the high volume of direction changes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.