Abstract

By using ten years of collocated Precipitation Radar and buoy data, the relationships between Ku-band normalized radar cross section (σ°) and integrated wind and wave parameters (e.g., significant wave height, wave period, wave steepness, and wave age) at low incidence angles are analyzed for different sea states using correlation and dependence analysis. The results show that the relationships are significantly different for different sea states. Second, the potential for inverting these parameters directly from a single σ° is investigated. The results reveal that the retrieval of wind speed above 10 m ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">U</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sub> ) is most suitable for a nonpure-swell sea and that the performance of significant wave height ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ) retrieval decreases with the ratio of swell to wind waves. For wave period and wavelength, a feasible inversion can only be performed for a wind-wave-dominated sea. Wave steepness (δ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">a</sub> ) is strongly correlated with σ° in all sea states and can even be higher than that for <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">U</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sub> in pure-swell seas. It is suggested from the present data set that real wave age (β) may be retrieved from a swell-dominated sea and, therefore, has a low-value cutoff. Furthermore, the extent to which <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">U</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sub> retrieval depends on sea state is examined by calculating the correlation coefficient between σ° residuals and various standard wave parameters and, then, by determining the partial correlation coefficient between σ° and each wave parameter controlled by <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">U</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sub> . Both results indicate that wind direction is better taken into account above 13.5°. Moreover, an auxiliary parameter related to wave slope, such as wave steepness, would help to improve retrieval performance. Significant wave height data are of secondary use, but an implementation with real wave age information might not significantly improve wind speed retrieval. To improve the performance of <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> and wave period retrieval, auxiliary information, such as wind speed, wave steepness, or wave age, is needed. Finally, multivariable empirical models are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.