Abstract
Anthropogenic ecological ecosystems create favourable conditions for the growth of the nitrophilous medicinal species Chelidonium majus in six urban parks in Southern Poland. This study focuses on the concentrations of trace elements in the soils, leaves, stems, and rhizomes of greater celandine. The soil samples were taken only in the humus horizon (A), which averaged approximately 15 cm in thickness under the clumps of Ch. majus. Regarding the reaction, the soil samples tested can be described as slightly acidic (5.6-6.8 in KCl) to alkaline (7.1-7.4 in H2O). Organic carbon content at all sites is high, ranging from 3.2% to 13.6%, while the highest total nitrogen (Nt) content is 0.664%. The average total phosphorus (Pt) content in all samples is 548.8 mg/kg (and its range is 298-940 mg/kg), such values indicating its anthropogenic origin. In terms of heavy metals, Zn has the highest content in the analysed soil samples compared to the other elements, and its range is from 394.50 mg/kg to 1363.80 mg/kg in soil. In rhizomes, Zn also has the highest values (178.7-408.3 mg/kg), whereas, in stems and leaves, it varies (from 80.6 to 227.5 and from 57.8 to 297.4 mg/kg, respectively). Spearman's rank correlation showed high correlations between the content of Pb, Zn, Cd, and As in the soil and rhizomes of Ch. majus. Despite soil contamination with Pb, Cd, and Zn, Ch. majus does not accumulate them in its tissues. However, the translocation of Hg and Cr from rhizomes to leaves was observed. The different concentrations of metals in each park result from the degree of diversity of the parent rocks on which the soil was formed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.