Abstract

Tafluposide (F11782), an epipodophyllotoxin derivative currently undergoing phase I clinical trials, is structurally close to the established anti-cancer drug etoposide, but mechanistically distinct. It is a dual inhibitor of topoisomerases I and II which impairs the binding of the enzyme to DNA, but does not stabilize the cleavage complex. Nevertheless, both etoposide and tafluposide induce DNA strand breaks and are potent pro-apoptotic agents. In this study, we have compared the cellular response of HL-60 human promyelocytic leukemia cells treated with etoposide and tafluposide. We show that tafluposide induces delayed, but extensive, DNA strand breaks, whereas etoposide provokes rapid and massive DNA damage. The two drugs trigger similar types of alterations at the mitochondrial and cell cycle levels, and lead to the generation of comparable levels of reactive oxygen species, but with different kinetics. Our data suggest that modification of the mitochondrial mass plays an important role in apoptosis induced by DNA-damaging anti-cancer agents, at least in the epipodophyllotoxin series. We suggest that drug-induced mitochondrial alterations can be divided into three successive steps: (i) hyperpolarization, (ii) depolarization and (iii) increase of the mitochondrial mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.