Abstract

The origins of dendritic cells (DCs) are poorly understood. In inflammation, DCs can arise from blood monocytes (M(O)s), but their steady-state origin may differ, as shown for Langerhans cells. Two main subsets of M(O)s, defined by expression of different chemokine receptors, CCR2 and CX(3)CR1, have been described in mice and humans. Recent studies have identified the inflammatory function of CCR2(high)CX(3)CR1(low) M(O)s but have not defined unambiguously the origin and fate of CCR2(low)CX(3)CR1(high) cells. In this study, we show that rat M(O)s can also be divided into CCR2(high)CX(3)CR1(low)(CD43(low)) and CCR2(low)CX(3)CR1(high)(CD43(high)) subsets with distinct migratory properties in vivo. Using whole body perfusion to obtain M(O)s, including the marginating pool, we show by adoptive transfer that CD43(low) M(O)s can differentiate into CD43(high) M(O)s in blood without cell division. By adoptive transfer of blood M(O)s followed by collection of pseudoafferent lymph, we show for the first time that a small proportion of intestinal lymph DCs are derived from CCR2(low)CX(3)CR1(high)(CD43(high)) blood M(O)s in vivo under steady-state conditions. This study confirms one of the possible origins of CCR2(low)CX(3)CR1(high) blood M(O)s and indicate that they may contribute to migratory intestinal DCs in vivo in the absence of inflammatory stimuli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.