Abstract

Laws mandating phosphorus (P)-based nutrient management plans have been passed in several U.S. Mid-Atlantic states. Biosolids (sewage sludge) are frequently applied to agricultural land and in this study we evaluated how biosolids treatment processes and biosolids P tests were related to P behavior in biosolids-amended soils. Eight biosolids generated by different treatment processes, with respect to digestion and iron (Fe), aluminum (Al), and lime addition, and a poultry litter (PL), were incubated with an Elkton silt loam (fine-silty, mixed, active, mesic Typic Endoaquult) and a Suffolk sandy loam (fine-loamy, siliceous, semiactive, thermic Typic Hapludult) for 51 d. The amended soils were analyzed at 1 and 51 d for water-soluble phosphorus (WSP), iron-oxide strip--extractable phosphorus (FeO-P), Mehlich-1 P and pH. The biosolids and PL were analyzed for P, Fe, and Al by USEPA 3050 acid-peroxide digestion and acid ammonium oxalate, Mehlich-1, and Mehlich-3 extractions. Biosolids and PL amendments increased extractable P in the Suffolk sandy loam to a greater extent than in the Elkton silt loam throughout the 51 d of the incubation. The trend of extractable WSP, FeO-P, and Mehlich-1 P generally followed the pattern: [soils amended with biosolids produced without the use of Fe or Al] > [PL and biosolids produced using Fe or Al and lime] > [biosolids produced using only Fe and Al salts]. Mehlich-3 P and the molar ratio of P to [Al + Fe] by either the USEPA 3050 digestion or oxalate extraction of the biosolids were good predictors of changes in soil-extractable P following biosolids but not PL amendment. Therefore, the testing of biosolids for P availability, rather than total P, is a more appropriate tool for predicting extractable P from the biosolids-amended soils used in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call