Abstract

Phylogenetic analyses of rbcL sequences were used to address both systematic and evolutionary questions posed by the angiosperm family Hydrangeaceae. Our analyses suggest the presence of a monophyletic Hydrangeaceae most closely allied with Loasaceae, a finding in agreement with other molecular as well as morphological analyses. Molecular data indicate that Hydrangeaceae comprise Decumaria, Pileostegia, Schizophragma, Hydrangea, Dichroa, Broussaisia, Platycrater, Cardiandra, Deinanthe, Carpenteria, Philadelphus, Deutzia, Fendlerella, Whipplea, Fendlera, Jamesia, and the enigmatic Kirengeshoma. A particularly close relationship of Kirengeshoma and Deutzia is indicated. Analysis of rbcL sequences suggests that Fendlera and Jamesia are sister to the remainder of the family, lending support to the hypothesis that at least some Carpenterieae are basal in the family and that Hydrangeaceae may have originated in xeric habitats. If this phylogenetic placement of Jamesia and Fendlera is correct, the rbcL trees also suggest that the level of epigyny has decreased in these genera, as well as in the Fendlerella‐ Whipplea clade and Carpenteria when compared to the outgroup taxa, which are wholly epigynous. Furthermore, the rbcL trees support proposed evolutionary trends in wood anatomy, suggesting, for example, that upland tropical taxa have evolved longer vessel elements with more numerous bars on scalariform perforation plates. The xerophytic basal members of Hydrangeaceae, like the closely related Loasaceae, have short, narrow vessel elements with scalariform perforation plates bearing few bars. Following Jamesia and Fendlera, the remaining hydrangeoids are divided into two large subclades that closely parallel the traditional division of the family into Philadelpheae and Hydrangeae. Both rbcL sequences and morphological data suggest close relationships between: 1) Fendlerella and Whipplea; 2) Decumaria, Pileostegia, and Schizophragma; 3) Carpenteria and Philadelphus; 4) Deinanthe and Cardiandra; 5) Dichroa, Broussaisia, and Hydrangea macrophylla. Molecular and morphological data also concur in demonstrating that the large genus Hydrangea is not a monophyletic assemblage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call