Abstract

Because of limited amounts of natural resources, reclaimed asphalt pavement (RAP) has gained popularity in the asphalt pavement industry to meet sustainability requirements in asphalt pavement. Concerns have been raised in relation to the intermediate temperature cracking performance of asphalt mixtures containing RAP. The objective of this study was to evaluate the intermediate temperature cracking resistance of asphalt mixtures and recovered asphalt binders containing RAP. Seven plant-produced asphalt mixtures from three transportation agencies with various RAP contents and the extracted asphalt binders were evaluated with respect to intermediate temperature cracking resistance. Asphalt binder experiments included chemical and rheological characterization of recovered asphalt binders. Chemical characterization consisted of Fourier transform infrared spectroscopy and saturates/aromatics/resins/asphaltenes component analysis. Linear amplitude sweep and time sweep tests were also performed to characterize the rheological properties of asphalt binders. Asphalt mixture experiments included four-point bending beam fatigue and semi-circular bend tests. Results indicated that, as expected, asphalt mixtures with high RAP contents resulted in asphalt binders and mixtures with reduced cracking resistance. Relationships between the asphalt binder chemical and rheological parameters and asphalt mixture cracking resistance were also investigated. Asphalt binder rheological and chemical parameters were well correlated. Asphalt binder rheological parameters showed reasonable to strong relationships with the four-point bending beam fatigue test result. The work presented in this paper is part of FHWA Transportation Pooled Fund Project TPF-5(294) “Develop Mix Design and Analysis Procedure for Asphalt Mixtures Containing High RAP and/or RAS Contents.”

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call