Abstract
Aortas from atherosclerotic rabbits have increased levels of 15-lipoxygenase, but the relationship between induction of this enzyme and the atherosclerotic process has not been defined. We found that dietary administration of cortisone acetate significantly suppressed atherosclerotic plaque formation in both Watanabe Heritable Hyperlipidemic (WHHL) and cholesterol-fed WHHL NZW heterozygous rabbits. There was, however, no corresponding decrease in the elevated 15-lipoxygenase activity. In addition, the elevated 15-lipoxygenase activity in atherosclerotic rabbit aortas was uniformly distributed throughout the aorta, and was not preferentially localized in the lesions. These results indicate that induction of the 15-lipoxygenase is not necessarily causally related to plaque development, and that plaques are not the major source of the increased enzyme activity. However, the results confirm that hypercholesterolemia is a necessary condition for both atherosclerosis and 15-lipoxygenase induction, suggesting that perhaps the 15-lipoxygenase may represent a protective response to the hyperlipidemic stress. This possibility is supported by the finding that the induced 15-lipoxygenase converts linoleic acid, which is the predominant essential fatty acid in aorta, to 13-hydroxyoctadecadienoic acid (13-HODE). This compound is a chemorepellant factor for platelets, inhibits platelet thromboxane synthesis, and stimulates prostacyclin synthesis by endothelial cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.