Abstract

By employing the dissociation energy and the equilibrium bond length for a diatomic molecule as explicit parameters, we generate an improved form of the Williams-Poulios potential energy model. It is found that the negative Williams-Poulios potential model is equivalent to the Manning-Rosen potential model for diatomic molecules. We observe that the Manning-Rosen potential is superior to the Morse potential in reproducing the interaction potential energy curves for the \({{a}^{3} \Sigma_{{\rm u}}^{+}}\) state of the 6Li2 molecule and the \({{X}^{1} \sum^{+}}\) state of the SiF+ molecule.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call