Abstract

In the bacteriorhodopsin photocycle the recovery of the initial BR state from the M intermediate occurs via the N and O intermediates. The molecular events in this process include reprotonation of the Schiff base and the subsequent uptake of a proton from the cytoplasmic side, as well as reisomerization of the retinal from 13-cis to all-trans. We have studied the kinetics of the intermediates and the proton uptake. At moderately low pH little of the N state accumulates, and the O state dominates in the reactions that lead from M to BR. The proton uptake lags behind the formation of O, suggesting the sequence N(0)<==>O(0) + H+ (from the bulk)-->O(+1)-->BR+H+ (to the bulk), where the superscripts indicate the net protonation state of the protein relative to BR. Together with a parallel study of ours at moderately high pH, these results suggest that the sequence of proton uptake and retinal reisomerization depends on pH: at low pH the isomerization occurs first and O accumulates, but at high pH the isomerization is delayed and therefore N accumulates. Although this model contains too many rate constants for rigorous testing, we find that it will generate most of the characteristic pH-dependent kinetic features of the photocycle with few assumptions other than pH dependency for protonation at the proton release and uptake steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.