Abstract
Rhodobacter sphaeroides MDC 6521 was able to produce bio-hydrogen (H(2)) in anaerobic conditions under illumination. In this study the effects of the hydrogenase inhibitor-diphenylene iodonium (Ph(2)I) and its solvent dimethylsulphoxide (DMSO) on growth characteristics and H(2) production by R. sphaeroides were investigated. The results point out the concentration dependent DMSO effect: in the presence of 10mM DMSO H(2) yield was ~6 fold lower than that of the control. The bacterium was unable to produce H(2) in the presence of Ph(2)I. In order to examine the mediatory role of proton motive force (∆p) or the F(0)F(1)-ATPase in H(2) production by R. sphaeroides, the effects of Ph(2)I and DMSO on ∆p and its components (membrane potential (∆ψ) and transmembrane pH gradient), and ATPase activity were determined. In these conditions ∆ψ was of -98mV and the reversed ∆pH was +30mV, resulting in ∆p of -68mV. Ph(2)I decreased ∆ψ in concentrations of 20μM and higher; lower concentrations of Ph(2)I as DMSO had no valuable effect on ∆ψ. The R. sphaeroides membrane vesicles demonstrated significant ATPase activity sensitive to N,N'-dicyclohexylcarbodiimide. The 10-20μM Ph(2)I did not affect the ATPase activity, whereas 40μM Ph(2)I caused a marked inhibition (~2 fold) in ATPase activity. The obtained results provide novel evidence on the involvement of hydrogenase and the F(0)F(1)-ATPase in H(2) production by R. sphaeroides. Moreover, these data indicate the role of hydrogenase and the F(0)F(1)-ATPase in ∆p generation. In addition, DMSO might increase an interaction of nitrogenase with CO(2), decreasing nitrogenase activity and affecting H(2) production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.