Abstract
Background Research has linked knee extensor moment and knee shear force to the non-contact anterior cruciate ligament injury during the landing motion. However, how these biomechanical performance factors relate to knee translations in vivo is not known as knee translations cannot be obtained with traditional motion capture techniques. The purpose of this study was to combine traditional motion capture with high-speed, biplane fluoroscopy imaging to determine relationships between knee extensor moment and knee shear force profiles with anterior and lateral tibial translations occurring during drop landing in female athletes. Methods 15 females performed drop landings from a height of 40 cm while being recorded using a high speed, biplane fluoroscopy system and simultaneously being recorded using surface marker motion capture techniques to estimate knee joint angle, reaction force and moment profiles. Findings No significant statistical relationships were observed between peak anterior or posterior knee shear force and peak anterior and lateral tibial translations; or, between peak knee extensor moment and peak anterior and lateral tibial translations. Although differences were noted in peak shear force ( P = 0.02) and peak knee extensor moment ( P < 0.001) after stratification into low and high shear force and moment cohorts, no differences were noted in anterior and lateral tibial translations (all P ≥ 0.18). Interpretation Females exhibiting high knee extensor moment and knee shear force during drop landings do not yield correspondingly high anterior and lateral tibial translations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.