Abstract
We examined relationships among cell wall feruloylation, diferulate cross-linking, p-coumarate deposition, and apoplastic peroxidase (EC 1.11.1.7) activity with changes in the elongation rate of leaf blades of slow and rapid elongating genotypes of tall fescue ( Festuca arundinacea Schreb.). Growth was not directly influenced by ferulic acid deposition but leaf elongation decelerated as 8-5-, 8- O-4-, 8-8-, and 5-5-coupled diferulic acids accumulated in cell walls. Growth rapidly slowed and stopped with the deposition of p-coumarate, which is primarily associated with lignification in grass cell walls. Accretion of ferulate, diferulates and p-coumarate continued after growth ended, into the later stages of secondary wall formation. The concentration of 8-coupled diferulates dwarfed that of the more commonly measured 5-5-coupled isomer, suggesting that the latter dimer is a poor indicator of diferulate cross-linking in cell walls. Further work is required to clearly demonstrate the role of diferulate cross-linking and p-coumaroylated lignins in the cessation of leaf growth in grasses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.