Abstract

Cognitive fatigue emerges in wide-ranging tasks and domains, but traditional vigilance tasks provide a well-studied context in which to explore the mechanisms underlying it. Though a variety of experimental methodologies have been used to investigate cognitive fatigue in vigilance, relatively little research has utilized electroencephalography (EEG), specifically event-related potentials (ERPs), to explore the nature of cognitive fatigue, also known as the vigilance decrement. Moreover, much of the research that has been done on vigilance and ERPs uses non-traditional vigilance paradigms, limiting generalizability to the established body of behavioral results and corresponding theories. In this study, we address concerns with prior research by (1) investigating the vigilance decrement using a well-established visual vigilance task, (2) utilizing a task designed to attenuate possible confounding ERP components present within a vigilance paradigm, and (3) informing our interpretations with recent findings from ERP research. We averaged data across electrodes located over the frontal, central, and parietal scalp. Then, we generated waveforms locked to the onset of critical low-frequency or non-critical high-frequency events during a 40 min task that was segregated into time blocks for data analysis. There were three primary findings from the analyses of these data. First, mean amplitude of N1 was greater during later blocks for both low-frequency and high-frequency events, a contradictory finding compared to past visual vigilance studies that is further discussed with respect to current interpretations of the N1 in visual attention tasks. Second, P3b mean amplitude following low-frequency events was reduced during later blocks, with a later onset latency. Third and finally, the decrease in P3b amplitude correlated with individual differences in the magnitude of the vigilance decrement, assessed using d′. The results provide evidence for degradations of cognitive processing efficiency brought on by extended time on task, leading to delayed processing and decreased discriminability of critical stimuli from non-critical stimuli. These conclusions are discussed in the context of the vigilance decrement and corresponding theoretical accounts.

Highlights

  • Cognitive fatigue encompasses a variety of phenomena related to decrements in cognitive performance associated with time-ontask (Ackerman and Kanfer, 2009)

  • The vigilance decrement has been investigated in a myriad of settings, which has led to the conclusion that “mental fatigue” and sustained attention are conceptually similar, if not identical (Oken et al, 2006)

  • We focus on the visual modality, describing key event-related potentials (ERPs) components identified in Koelega and Verbaten’s (1991) review, including the visual N1, the P2, and the P3b, in the time since

Read more

Summary

Introduction

Cognitive fatigue encompasses a variety of phenomena related to decrements in cognitive performance associated with time-ontask (Ackerman and Kanfer, 2009). One of the most well-studied manifestations of cognitive fatigue is the vigilance decrement, which is defined as a decreased probability of detecting rare critical events in streams of stimuli with increased time-ontask (Mackworth, 1948). The vigilance decrement has been investigated in a myriad of settings, which has led to the conclusion that “mental fatigue” and sustained attention are conceptually similar, if not identical (Oken et al, 2006). “Mental fatigue” can be understood as a progressive decrease in vigilance that is exacerbated by time spent on a tedious but demanding task (Charbonnier et al, 2016). The defining feature across these examples is that the vigilance decrement is a consequence of performing attention-demanding tasks over time spans ranging from tens of minutes to hours (e.g., See et al, 1995)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.