Abstract

Two suites of coals from the U.S. have been liquefied in a batch stirred autoclave reactor under a set of standard conditions. Data from the reactor have permitted both the rate and extent of conversion to be measured. Rate of reaction and extent of conversion of coal have then been used as dependent variables for development of correlations for reactivity with basic coal chemical, geochemical, and structural properties. In general, use of a kinetic definition for reactivity has been shown to be superior in ranking relative reactivities among closely related coals, and for developing correlations with compositional parameters such as volatile matter, reactive macerals, and vitrinite reflectance. Carbon aromaticity as determined by 13C-NMR and structural parameters as determined by pyrolysis/mass spectrometry has also been found to be useful in providing insight into the relationship between coal structure and coal reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.