Abstract

Patients with medically refractory Parkinson's disease (PD) obtain significant clinical benefit from subthalamic nucleus (STN) stimulation. The degree to which a successful outcome relates to the anatomic location of the stimulating electrode has not yet been clearly established. Many studies have attempted to correlate the clinical result with the electrode location using postoperative magnetic resonance imaging (MRI) and there have been a few that used autopsy-determined locations. In this report, we describe long-term clinical follow-up in a patient with autopsy-determined electrode tip anatomic location. A 67-year-old patient with a 27-year history of idiopathic PD complicated by disabling motor fluctuations and dopaminergic dyskinesias underwent bilateral STN deep brain stimulation (DBS). He was prospectively followed in a long-term clinical protocol until his death 40 months after electrode placement. Postoperative magnetic resonance (MR) imaging and postmortem studies of this patient's brain were performed to localize DBS tip locations. STN stimulation produced improvement of the patient's motor fluctuations, dyskinesias and clinical motor performance, especially appendicular tremors, rigidity and bradykinesia. MRI showed the electrode tips to be within 2 mm of the intended target. Postmortem brain analysis identified the right DBS tip location at the dorsomedial edge of the STN, with the left electrode in the vicinity (but not within) the STN. Chronic DBS elicited minor reactive changes were confined to the immediate vicinity of the electrode tracks. The pathological analysis demonstrated numerous cortical Lewy bodies and degenerative encephalopathy, establishing the diagnosis of transitional type diffuse Lewy body disease (DLBD) rather than simple PD. This patient obtained clinical benefit from STN stimulation typical of that seen for most PD patients. Both the MR analysis and the autopsy demonstrated electrode placement at or outside the boundaries of the STN, suggesting that that clinical efficacy may not depend on electrode location within the central region of the STN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.