Abstract

The atmospheric boundary layer (ABL) is an important physical characteristic of the Earth’s atmosphere. Compared with the typical ABL, the ABL in arid regions has distinct features and is formed by particular mechanisms. In this paper, the depth of the diurnal and nocturnal ABLs and their related thermodynamic features of land surface processes, including net radiation, the ground-air temperature difference and sensible heat flux, under typical summer and winter conditions are discussed on the basis of comprehensive observations of the ABL and thermodynamic processes at the land surface carried out in the extreme arid zone of Dunhuang. The relationships of the ABL depth in the development and maintenance stages with these thermodynamic features are also investigated. The results show that the depth of the ABL is closely correlated with the thermodynamic features in both development and maintenance stages and more energy is consumed in the development stage. Further analysis indicates that wind velocity also affects ABL development, especially the development of a stable boundary layer in winter. Taken together, the analysis results indicate that extremely strong thermodynamic processes at the land surface are the main driving factor for the formation of a deep ABL in an arid region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call