Abstract

BackgroundIn rice, the GW2 gene, found on chromosome 2, controls grain width and weight. Two homologs of this gene, ZmGW2-CHR4 and ZmGW2-CHR5, have been found in maize. In this study, we investigated the relationship, evolutionary fate and putative function of these two maize genes.ResultsThe two genes are located on duplicated maize chromosomal regions that show co-orthologous relationships with the rice region containing GW2. ZmGW2-CHR5 is more closely related to the sorghum counterpart than to ZmGW2-CHR4. Sequence comparisons between the two genes in eight diverse maize inbred lines revealed that the functional protein domain of both genes is completely conserved, with no non-synonymous polymorphisms identified. This suggests that both genes may have conserved functions, a hypothesis that was further confirmed through linkage, association, and expression analyses. Linkage analysis showed that ZmGW2-CHR4 is located within a consistent quantitative trait locus (QTL) for one-hundred kernel weight (HKW). Association analysis with a diverse panel of 121 maize inbred lines identified one single nucleotide polymorphism (SNP) in the promoter region of ZmGW2-CHR4 that was significantly associated with kernel width (KW) and HKW across all three field experiments examined in this study. SNPs or insertion/deletion polymorphisms (InDels) in other regions of ZmGW2-CHR4 and ZmGW2-CHR5 were also found to be significantly associated with at least one of the four yield-related traits (kernel length (KL), kernel thickness (KT), KW and HKW). None of the polymorphisms in either maize gene are similar to each other or to the 1 bp InDel causing phenotypic variation in rice. Expression levels of both maize genes vary over ear and kernel developmental stages, and the expression level of ZmGW2-CHR4 is significantly negatively correlated with KW.ConclusionsThe sequence, linkage, association and expression analyses collectively showed that the two maize genes represent chromosomal duplicates, both of which function to control some of the phenotypic variation for kernel size and weight in maize, as does their counterpart in rice. However, the different polymorphisms identified in the two maize genes and in the rice gene indicate that they may cause phenotypic variation through different mechanisms.

Highlights

  • In rice, the GW2 gene, found on chromosome 2, controls grain width and weight

  • The objectives of this study were to clarify the relationship of the two maize genes that were found to be homologous to the rice GW2 gene; to investigate their evolutionary fate following the duplication of these genes in maize; and to characterize the contribution and putative function of these two genes in maize grain yield-related traits

  • Comparison of the regions around both maize genes with the region containing rice GW2 showed that both maize regions are collinear with the rice region, indicating that the two maize genes are coorthologs of the rice GW2 gene

Read more

Summary

Introduction

The GW2 gene, found on chromosome 2, controls grain width and weight. Two homologs of this gene, ZmGW2-CHR4 and ZmGW2-CHR5, have been found in maize. Comparative QTL mapping studies have shown that some QTL for many traits, including grain yield, are located on collinear chromosomes in different species [15,16,17,18]. This suggests that mutations in orthologous genes contribute to similar trait variation. Similar function of the genes was gained following divergence of the different species being compared, the mutations will be completely independent, and may be dissimilar in nature This has been seen in the wellknown “green revolution” genes Rht in wheat, GAI in Arabidopsis and Dwarf in maize, which all contribute to short plant stature [19]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call