Abstract

The estuarine resident crustacean sand shrimp, Crangon uritai, has a higher tolerance to neonicotinoid insecticides than that of the kuruma prawns, Penaeus japonicus. However, the reason for the differential sensitivities between the two marine crustaceans remains to be understood. This study explored the mechanism underlying differential sensitivities based on insecticide body residues after exposing both said crustaceans to two insecticides (acetamiprid and clothianidin) with or without oxygenase inhibitor piperonyl butoxide (PBO) for 96 h. Two graded-concentration groups were formed; group H (1/15–1 times the 96-h LC50 values) and L (one-tenth the concentration of group H). Results showed that the internal concentration in survived specimens tended to be lower in sand shrimp than in kuruma prawns. Co-treatment of PBO with two neonicotinoids not only increased sand shrimp mortality in the H group, but also altered metabolism of acetamiprid into its metabolite, N-desmethyl acetamiprid. Furthermore, molting during the exposure period enhanced bioconcentration of insecticides, but not affects survival. Collectively, the higher tolerance of sand shrimp than that of kuruma prawns to the two neonicotinoids can be explained by lower bioconcentration potential and more involvement of oxygenase in their alleviating lethal toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.