Abstract

In this study, we experimentally studied the relationship between wingbeat frequency and resonant frequency of 30 individuals of eight insect species from five orders: Odonata (Sympetrum flaveolum), Lepidoptera (Pieris rapae, Plusia gamma and Ochlodes), Hymenoptera (Xylocopa pubescens and Bombus rupestric), Hemiptera (Tibicen linnei) and Coleoptera (Allomyrina dichotoma). The wingbeat frequency of free-flying insects was measured using a high-speed camera while the natural frequency was determined using a laser displacement sensor along with a Bruel and Kjaer fast Fourier transform analyzer based on the base excitation method. The results showed that the wingbeat frequency was related to body mass (m) and forewing area (Af), following the proportionality f ∼ m1/2/Af, while the natural frequency was significantly correlated with area density (f0 ∼ mw/Af, mw is the wing mass). In addition, from the comparison of wingbeat frequency to natural frequency, the ratio between wingbeat frequency and natural frequency was found to be, in general, between 0.13 and 0.67 for the insects flapping at a lower wingbeat frequency (less than 100 Hz) and higher than 1.22 for the insects flapping at a higher wingbeat frequency (higher than 100 Hz). These results suggest that wingbeat frequency does not have a strong relation with resonance frequency: in other words, insects have not been evolved sufficiently to flap at their wings' structural resonant frequency. This contradicts the general conclusion of other reports-–that insects flap at their wings' resonant frequency to take advantage of passive deformation to save energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.