Abstract

In-field Jcs were improved by introducing Ba–Nb–O (BNO)-nanorods in YBa2Cu3Oy (Y123) and ErBa2Cu3Oy (Er123) films. Retention of Jc against the magnetic field for the BNO-doped Er123 film was superior to that for the BNO-doped Y123 film. Sharp distribution of local critical current density originating from vortex pinning by nanorods with uniform morphology was demonstrated in the Er123 film. On the other hand, fluctuating microstructures of nanorods formed in the Y123 film prepared by the same deposition conditions. Moreover, different growth temperature dependences of nanorod morphology between the Y123 and Er123 films were clarified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.