Abstract

We study the relation between short-time vibrational modes and long-time relaxational dynamics in a kinetically constrained lattice gas with harmonic interactions between neighbouring particles. We find a correlation between the location of the low- (high-) frequency vibrational modes and regions of high (low) propensity for motion. This is similar to what was observed in continuous force systems, but our interpretation is different: in our case relaxation is due to localised excitations which propagate through the system; these localised excitations act as background disorder for the elastic network, giving rise to anomalous vibrational modes. Our results provide an example whereby a correlation between spatially extended low-frequency modes and high-propensity regions does not imply that relaxational dynamics originates in extended soft modes but rather belies their common origin. We consider other measures of elastic heterogeneity, such as non-affine displacement fields and mode localisation lengths, and discuss implications of our results to interpretations of dynamic heterogeneity more generally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.