Abstract

We study the relation between short-time vibrational modes and long-time relaxational dynamics in a kinetically constrained lattice gas with harmonic interactions between neighbouring particles. We find a correlation between the location of the low- (high-) frequency vibrational modes and regions of high (low) propensity for motion. This is similar to what was observed in continuous force systems, but our interpretation is different: in our case relaxation is due to localised excitations which propagate through the system; these localised excitations act as background disorder for the elastic network, giving rise to anomalous vibrational modes. Our results provide an example whereby a correlation between spatially extended low-frequency modes and high-propensity regions does not imply that relaxational dynamics originates in extended soft modes but rather belies their common origin. We consider other measures of elastic heterogeneity, such as non-affine displacement fields and mode localisation lengths, and discuss implications of our results to interpretations of dynamic heterogeneity more generally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call