Abstract

We have used a three-dimensional diffusion model of calcium entering the presynaptic nerve terminal through discrete channels to simulate experiments relating transmitter release to presynaptic calcium current. The relationship will be less than linear, or will curve downward, if calcium channels are well separated. It will resemble a power-law function with exponent less than the cooperativity of calcium action if channels are clustered closer together. Large presynaptic depolarizations elicit more release than small depolarizations admitting the same calcium influx. This occurs because large pulses open more channels near each other, with the result that the calcium concentration near release sites is greater, due to overlap of calcium diffusing from adjacent channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.