Abstract

Waste biomass from plant production is an important raw material for producing energy from renewable sources. Capabilities and technologies of processing are still being improved and modernized in order to achieve the highest energy efficiency. This study assesses energetic properties of wheat straw, rapeseed, and willow. The material was subjected to heat treatment, i.e., torrefaction process at temperatures of 220, 260, and 300 °C for the duration of 60, 75, and 90 min. Measurements were performed to compare parameters of raw biomass and the torrefied products. The materials were examined and compared for the contents of moisture; biogenic elements N, C, and H; as well as calorific value, ash, and volatiles. Measurements were also performed to assess the composition of biomass in terms of particle sizes. Analysis of the results made it possible to determine optimal parameters for carrying out the torrefaction process. The use of the torrefaction process made it possible to obtain a material with an increased calorific value by more than 20%, and a 2–3 times higher content of elements in the powdered material, as well as to improve the grinding of the material. This information will enable the development of biomass thermal treatment technologies towards the use of waste biomass from agricultural production.

Highlights

  • Many research institutions and corporations involved in production of energy from biomass currently in their research focus on the development of and improvements in the technologies of energy conversion, process effectiveness, and the enhancement of the energy properties of the fuels obtained as a result of thermochemical transformation

  • Detailed laboratory tests examining the effect of temperature used during torrefaction process in distribution and physicochemical properties of the products were conducted for rapeseed straw, wheat straw, and willow grown for biomass

  • The highest cellulose content was identified in willow 44.6%; lignin at the level of 21.3% was found in wheat straw, and hemicellulose at the level of 32.1% was found in willow biomass [28]

Read more

Summary

Introduction

Many research institutions and corporations involved in production of energy from biomass currently in their research focus on the development of and improvements in the technologies of energy conversion, process effectiveness, and the enhancement of the energy properties of the fuels obtained as a result of thermochemical transformation. In the case of heating applications, this has led to increased use of biomass-fired furnaces. In many cases, these devices use a single combustion chamber originally designed to burn coal, and often the combustion process is poorly controlled. New combustion technologies designed for biomass fuels allow one to reduce dust emissions as well as organic compounds to the environment [2]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.