Abstract

We investigated the relationship between thyroid peroxidase (TPO) antibody and T lymphocyte epitopes in TPO-adenovirus (TPO-Ad) immunized BALB/c mice and mice transgenic for the human class II molecule DR3 associated with human thyroid autoimmunity. TPO autoantibodies are largely restricted to an immunodominant region (IDR). BALB/c mice immunized with fewer (10(7) vs. 10(9)) TPO-Ad particles developed TPO antibodies with lower titers that displayed greater restriction to the IDR. However, as with higher-dose TPO-Ad immunization, T cell epitopes (assessed by splenocyte interferon-gamma response to TPO in vitro) were highly diverse and variable in different animals. In contrast, DR3 mice immunized the higher TPO-Ad dose (10(9) particles) had high TPO antibody levels that showed relative focus on the IDR. Moreover, T cell epitopes recognized by splenocytes from DR3 mice showed greater restriction than BALB/c mice. Antibody affinities for TPO were higher in DR3 than in BALB/c mice. The present study indicates that weak TPO-Ad immunization of BALB/c mice (with consequent low TPO antibody titers) is required for enhanced IDR focus yet is not associated with T cell epitopic restriction. Humanized DR3 transgenic mice, despite stronger TPO-Ad immunization, develop higher titer TPO antibodies that do focus on the autoantibody IDR with T cells that recognize a more limited range of TPO peptides. These data suggest a relationship between major histocompatibility complex class II molecules and the development of antibodies to the IDR, a feature of human thyroid autoimmunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call