Abstract

The Kohlrausch-Williams-Watts (KWW) and the Havriliak-Negami (HN) relaxation functions have been widely used to describe the relaxation behavior of glass-forming liquids and complex systems. While the HN relaxation function is a frequency function, the natural domain of the KWW relaxation function is time (although it has also been used with frequency-domain spectroscopies). A relationship among the parameters of the two models is suggested by the fact that both models yield an accurate description of real data. Nevertheless, this relationship cannot be an analytical one, since it is known that the HN and the KWW relaxation functions are not exactly Fourier transforms of each other. In order to find out the nature of this relationship, a method which makes use of a distribution of relaxation times is proposed here. Numerical simulations following the KWW model have been assumed to describe the relaxation behavior in time; likewise, the HN description was assumed to be valid for the frequency domain. From this work, a connection among the parameters of both models is obtained, which is expected to be valid for those experimental data that can be described by either the KWW or the HN model. This is the case for most, if not all, measurements on the dynamics in complex systems and glass-forming liquids that frequently appear in the literature. The proposed procedure has been tested by using dielectric-spectroscopy measurements, both in frequency and time domains to study the \ensuremath{\alpha} relaxation in a glass-forming polymeric system, poly(hydroxy ether of bisphenol-A).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call