Abstract
We analyze the R-and K s-band photometric profiles for two independent samples of edge-on galaxies. The thickness of old stellar disks is shown to be related to the relative masses of the spherical and disk components of galaxies. The radial-to-vertical scale length ratio for galactic disks increases (the disks become thinner) with increasing total mass-to-light ratio of the galaxies, which reflects the relative contribution of the dark halo to the total mass, and with decreasing central deprojected disk brightness (density). Our results are in good agreement with numerical models of collisionless disks that evolved to a marginally stable equilibrium state. This suggests that, in most galaxies, the vertical stellar-velocity dispersion, on which the equilibrium-disk thickness depends, is close to a minimum value that ensures disk stability. The thinnest edge-on disks appear to be low-brightness galaxies in which the dark-halo mass far exceeds the stellar-disk mass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.