Abstract

Adsorption of the antigen to an aluminum-containing adjuvant is considered an important aspect of vaccine formulation. Adsorption is described by two parameters: the maximum amount that can be adsorbed as a monolayer, which is characterized by the adsorptive capacity and the strength of the adsorption force, which is described by the adsorptive coefficient. Research to date has focused on the adsorptive capacity with the goal of complete adsorption of the antigen. In this study, the relationship between the adsorptive coefficient and immunopotentiation was investigated. Four vaccines were prepared in which the adsorptive coefficient was varied by altering the number of phosphate groups on the antigen (alpha casein and dephosphorylated alpha casein) or the number of surface hydroxyls on the adjuvant (aluminum hydroxide adjuvant and phosphate-treated aluminum hydroxide adjuvant). In vitro elution upon exposure to interstitial fluid or normal human plasma was inversely related to the adsorptive coefficient. The geometric mean antibody titer in mice was also inversely related to the adsorptive coefficient. T-cell activation was not observed in mice that received the vaccine with the greatest adsorptive coefficient (alpha casein/aluminum hydroxide adjuvant). This suggests that antigen processing and presentation to T-cells is impaired when the antigen is adsorbed too strongly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call