Abstract

The relationship between the spatial position of the diamond seed and growth mode is investigated with an enclosed-type holder for single-crystal diamond growth using the microwave plasma chemical vapor deposition epitaxial method. The results demonstrate that there are three main regions by varying the spatial position of the seed. Due to the plasma concentration occurring at the seed edge, a larger depth is beneficial to transfer the plasma to the holder surface and suppress the polycrystalline diamond rim around the seed edge. However, the plasma density at the edge decreases drastically when the depth is too large, resulting in the growth of a vicinal grain plane and the reduction of surface area. By adopting an appropriate spatial location, the size of single-crystal diamond can be increased from 7 mm × 7 mm × 0.35 mm to 8.6 mm × 8.6 mm × 2.8 mm without the polycrystalline diamond rim.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.