Abstract

AbstractThis paper presents an integrated analytical method for calculating the resultant unfactored geosynthetic force in reinforced earth structures under seismic loading conditions. The method utilizes a pseudostatic limit equilibrium approach for assessing the internal stability of a reinforced earth structure, assuming a potential rotational failure along a log spiral trace. A closed-form solution is presented for determining the sum of all horizontal forces mobilized in the geosynthetic reinforcement along their intersection with the critical log spiral surface. This mobilized sum is then redistributed among the individual layers to determine the unfactored reinforcement forces that are needed to resist the applied seismic acceleration. Parametric studies were utilized, and the results are presented in a series of design charts for different conditions. Such charts can be used to determine the required tensile strength of the reinforcement for a given seismic coefficient. Alternatively, for a given ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.