Abstract

To investigate the mechanical properties of a suspension plasma-sprayed (SPS) thermal barrier coating (TBC) with a unique cauliflower-like columnar structure, shear and cantilever bending tests were conducted on its single submillimeter-sized columns. In the shear test, the fracture of the single columns occurred at the porous layer near the top-coating/bond-coating interface. Compared with conventional atmospheric plasma-sprayed (APS) TBCs having a lamellar microstructure, the cantilever bending test revealed a significantly low Young's modulus along the out-of-plane direction and strong anisotropy in the elastic modulus of the SPS TBC. The shear strength and out-of-plane Young's modulus of the single columns increased due to the sintering resulting from thermal aging; however, the increasing ratio of the shear strength was higher than that of the Young's modulus. Both experimental and finite element analysis results indicated that the mechanical properties of the SPS TBC, as well as their variation with thermal aging, are dominated by those of the porous layer within the single column undergoing sintering. Moreover, the experimental results suggested that SPS TBCs having a cauliflower-like columnar microstructure have superior durability to thermal cycles compared with APS TBCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call