Abstract

Neural responses to a ligand vary widely between neurons; however, the mechanisms underlying this variation remain unclear. One possible mechanism is a variation in the number of receptors expressed in each neural membrane. Here, we synthesized a rhodamine-labeled orexin A compound, enabling us to quantify the amount of orexin binding to its receptors, OX1 and OX2, which principally couple to the Gq/11 protein. The rhodamine intensity and calcium response were measured under tetrodotoxin application from insular cortical glutamatergic neurons in Thy1-GCaMP6s transgenic mice using an in vivo two-photon microscope. Applying rhodamine-labeled orexin A (10 μM) to the cortical surface gradually and heterogeneously increased both the intensity of the rhodamine fluorescence and [Ca2+]i. Calcium responses started simultaneously with the increase in rhodamine-labeled orexin fluorescence and reached a plateau within several minutes. We classified neurons as high- and low-responding neurons based on the peak amplitude of the [Ca2+]i increase. The rhodamine fluorescence intensity was larger in the high-responding neurons than the low-responding neurons. Preapplication of SB334867 and TCS-OX2-29, OX1 and OX2 antagonists, respectively, decreased the proportion of high-responding neurons. These results suggest that the diverse receptor expression level in neural membranes is involved in mechanisms underlying varied neural responses, including [Ca2+]i increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.