Abstract

Debonding of fiber-reinforced composites can limit the increase of strength that a reinforced concrete (RC) beam can achieve due to the addition of the external layer of reinforcement provided by the composite. Small-scale direct shear tests can help understand the debonding phenomenon. However, researchers have debated for decades whether the results of direct shear tests can be used to predict the strain level at which the composite would fail in strengthened beams. This paper is the first systematic attempt to address this issue. A database of RC beam flexural tests and of direct shear tests that feature externally bonded polypara-phenylene-benzo-bisoxazole (PBO) fiber-reinforced cementitious matrix (FRCM) composite is compiled. For the beam tests, two methods are employed to determine the strain in the composite at failure due to debonding, referred to herein as the cross-sectional analysis method and the ΔM method, and the results are compared with those of direct shear tests. The relationship between the effective strain in the FRCM when composite action is lost and the debonding strain in direct shear tests is critically discussed taking into account what is prescribed by current design guidelines. The limitations of the cross-sectional analysis method to determine the effective strain are also highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.