Abstract

Volume rendering (VR) is a technique commonly used for the reconstruction of three-dimensional (3D) digital subtraction angiography (DSA) images, and the rendering parameters greatly affect the characteristics of the 3D image. This study aimed to test whether the optimal VR parameters for 3D DSA could be estimated from the contrast effects in rotational two-dimensional (2D) DSA images acquired using 3D DSA. Simulated blood vessels filled with various concentrations of contrast medium were scanned, and the 3D DSA data sets were reconstructed. The syngo AX vessel analysis software that was able to analyze 3D DSA VR image was used for objective measures. Raw data projection images of the 3D DSA data sets in which the mean diameter was calculated as a true value by the software at nine different thresholds for vessel segmentation were selected. In each image set, five images of all 133 rotational 2D DSA images were selected, and the contrast-enhanced area was extracted using a region-growing algorithm. Mean values and standard deviations of each contrast-enhanced area were calculated, and as the thresholds for vessel segmentation of the software increased by 500 every time, significant differences were observed in the mean values (P < 0.01). This optimal threshold can be applied to the window settings of the VR technique. Therefore, the optimal VR parameters for 3D DSA may be determined by analyzing the contrast effects of the raw data projection images, and user-dependent over- and underestimations of 3D DSA VR images also may be prevented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.