Abstract

The beam propagation method (BPM) can be viewed as a chain of alternating convolutions and multiplications, as filtering operations alternately in the space and frequency domains or as multiplication operations sandwiched between linear canonical or fractional Fourier transforms. These structures provide alternative models of inhomogeneous media and potentially allow mathematical tools and algorithms associated with these transforms to be applied to the BPM. As an example, in the case where quadratic approximation is possible, it is shown that the BPM can be represented as a single LCT system, leading to significantly faster computation of the output field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.