Abstract
The vertical attenuation coefficient of diffuse downwelling irradiance at 490 nm ( K d 490) is a parameter that we routinely derive from SeaWiFS images of the Baltic Sea. Here, through model simulations, we examine the relationship between K d(490), and the vertical attenuation coefficient of PAR ( K d PAR), as this later coefficient determines the light available for aquatic photosynthesis. A simple semi-analytical model is used to predict K d(490) and K d(PAR), as a function of the concentrations of chlorophyll, colored dissolved organic material (CDOM), suspended inorganic, and suspended organic particulate material. A series of model simulations based on variations in these optically significant constituents over a range realistic for the Baltic Sea, are used to define the relationship between the two attenuation coefficients. K d ( PAR ) = 0.6677 K d ( 490 ) 0.6763 . This relationship was verified, using data collected independently from the data set used to derive model coefficients, and appears robust when applied to the Baltic Sea. Comparison to other studies and model sensitivity analyses suggest that the relationship will be dependent on relatively large regional variations in CDOM absorption. A relationship between K d(490) and Secchi disk depth was also developed and verified. This relationship while useful was more uncertain. The uncertainty was related to a greater influence of scattering on Secchi disk depth estimates and the corresponding parameterization of scattering in our model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.