Abstract

Increased intracellular sugar concentration is an important contributor to the increased cold tolerance of conifers in winter. This study examines the extent to which wintertime respiratory loss of sugars leads to premature dehardening. Two-year-old seedlings of Scots pine (Pinus sylvestris L.), grown and cold-hardened in the field, were exposed to different temperature regimes for 16 weeks while dormant. To minimize short-term carry-over effects, after the temperature treatments, all seedlings were conditioned to 5.5 degrees C and watered before the assessment of non-structural carbohydrates and cold tolerance. Needle sugar concentration was decreased by 54, 32, 21 and 9% following treatment at 5.5, 0, -1.5 and -8.5 degrees C, respectively. Sugar concentration did not decrease as much in root tissues as in needles because starch was mobilized in roots. Cold tolerance of needles was analyzed by controlled freezing, and the temperature causing an initial 10% damage (LT(10)) was plotted as a function of needle sugar concentration, revealing a strong, linear relationship. When one-third of the initial sugars had been consumed, LT(10) had increased from -24.5 to -16.5 degrees C, and when one half had been consumed, LT(10) had increased to -10 degrees C. Consequences of these findings for the field performance of conifers are discussed in relation to climatic variation and change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.