Abstract

A better understanding of how anode surface properties affect growth, development, and activity of electrogenic biofilms has great potential to improve the performance of bioelectrochemical systems such as microbial fuel cells. The aim of this paper was to determine how anodes with specific exposed functional groups (-N(CH3)3 (+), -COOH, -OH, and -CH3), created using ω-substituted alkanethiolates self-assembled monolayers attached to gold, affect the surface properties and functional performance of electrogenic Shewanella oneidensis MR-1 biofilms. A combination of spectroscopic, microscopic, and electrochemical techniques was used to evaluate how electrode surface chemistry influences morphological, chemical, and functional properties of S. oneidensis MR-1 biofilms, in an effort to develop improved electrode materials and structures. Positively charged, highly functionalized, hydrophilic surfaces were beneficial for growth of uniform biofilms with the smallest cluster sizes and intercluster diffusion distances, and yielding the most efficient electron transfer. The authors derived these parameters based on 3D morphological features of biofilms that were directly linked to functional properties of the biofilm during growth and that, during polarization, were directly connected to the efficiency of electron transfer to the anode. Our results indicate that substratum chemistry affects not only primary attachment, but subsequent biofilm development and bacterial physiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.