Abstract

Indianmeal moth, Plodia interpunctella (Hübner), is classified as a freeze-intolerant organism and one of the most cold-tolerant stored-product pests. The objective of this study was to determine the relationship between mortality at low temperatures after minimum exposure and the supercooling point (SCP) for laboratory-reared P. interpunctella at different stages of development. This relationship also was analyzed for field-collected, cold-acclimated fifth instars. Mean SCP of laboratory-reared larvae (i.e., feeding stage) was consistently above approximately -16 degrees C. Mean SCP of laboratory-reared pupae and adults (i.e., nonfeeding stages) and field-collected, cold-acclimated fifth instars was consistently below approximately -21 degrees CP seemed to be the boundary between survival and death for larvae. However, it seemed that a 1-min exposure was not sufficient to cause larval mortality at the SCP. Alternatively, for both pupae and adults, the SCP seemed not to play an important role in their survival at low temperatures, with significant mortality observed at temperatures higher than the mean SCP. Adults were the most susceptible to low temperatures with no survival occurring at -20 degrees C, > 3 degrees C above its mean SCP. Results of this investigation demonstrate that P. interpunctella has a different response to low temperatures depending on stage of development and cold acclimation. Classifying P. interpunctella only as a freeze-intolerant organism disregards the occurrence of prefreeze mortality in this species. Therefore, a reclassification of this species (e.g., chill tolerant or chill susceptible) based on the extent of prefreeze mortality and the temperature and time of exposure at which it occurs is suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call