Abstract

Observations show that the Sun, which is the primary source of energy for the Earth’s climate system, is a variable star. In order to understand the influence of solar variability on the Earth’s climate, knowledge of solar variability and solar–terrestrial interactions is required. Knowledge of the Sun’s cyclic behavior can be used for future prediction purposes on Earth. In this study, the possible connection between sunspot numbers (SSN) as a proxy for the 11-year solar cycle and mean annual precipitation (MAP) in Iran were investigated, with the motivation of contributing to the controversial issue of the relationship between SSN and MAP. Nine locations throughout Iran were selected, representing different climatic conditions in the country. Cross-wavelet transform (XWT) analysis was employed to investigate the temporal relationship between cyclicities in SSN and MAP. Results indicated that a distinct 8–12-year correlation exists between the two time series of SSN and MAP, and peaks in precipitation mostly occur one to three years after the SSN maxima. The findings of this study can be beneficial for policymakers, to consider future potential droughts and wet years based on sunspot activities, so that water resources can be more properly managed.

Highlights

  • The Sun, as a dynamic object, shows different degrees of activity in its convection zone, surface, and atmosphere [1]

  • In order to investigate the connection between the 11-year sunspot activity cycle and precipitation patterns from 1950 to 2018 in Iran, the XWT technique was employed

  • sunspot numbers (SSN) records were used as indicators of the solar activity level

Read more

Summary

Introduction

The Sun, as a dynamic object, shows different degrees of activity in its convection zone, surface (photosphere), and atmosphere [1]. Solar variability can be classified as short-term (e.g., solar flares), intermediate, and long-term, covering a wide temporal range, from minutes to even millions and billions of years. Examples of the long-term solar variations include the 11-year Schwabe cycle (sunspot cycle), 22-year Hale cycle, 80 to 90-year Gleissberg cycle, ~180 to 200-year de Vries cycle, etc.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.