Abstract
The structural and thermodynamic properties of an anthraquinone derivative were studied by means of quantum-chemical calculations. Conformational analysis using ab initio and density functional theory methods revealed 14 low-energy conformers. In order to discuss similarities and differences in entropy of the conformers, the rotational and vibrational contributions to entropy were correlated with changes in conformer structure. The component of the moment of inertia perpendicular to the molecular plane gives significant input to DeltaSrot, whereas the largest contributions to the DeltaSvib have vibrations associated with the tau (S1C20) coordinate.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.