Abstract

Although tapered-wedge short stem has been widely employed with its availability for minimally invasive surgeries in total hip arthroplasty (THA), post-operative stress shielding matter remains unresolved in cementless procedures. This study aimed to clarify the most optimal femoral canal contact regions of the stem design taking stress shielding incidence into consideration. This investigation included 60 joints from 60 patients (mean age at operation: 65.9 years), of which follow-up duration after primary THA had been more than 2 years. Frequencies of spot welds, subsidence, and stress shielding were examined 2 years after surgery. The most suitable femoral canal contact regions were evaluated by plain radiograph (2D) and 3D-computed tomography analyses according to Nakata's division for fitting manners. Spot welds were observed in 38 cases (63.3%), and no subsidence case was seen. Respective number of stress shielding cases, based on Engh's classification, categorized as degree 0, 1, and 2, were 2 (3.3%), 31 (51.7%), and 27 (45.0%), while no cases for degree 3 or 4 were found. When assessed by 3D fitting analysis, 27 cases of stress shielding degree 2 were constituted by 13/42 cases of mediolateral (ML) fit, 2/4 cases of flare fit, and 12/14 cases of multi point fit. In 42 cases of ML fitting, stem contact rate of the most proximedial region in stress shielding degree 0 and 1 was significantly higher compared to stress shielding degree 2 cases. Meanwhile, the rates of distal regions were significantly lower or absent in stress shielding degree 0 and 1 cases. The initial fixation of this stem design was very good in our cohort regardless of fitting manners. This study successfully revealed that ML fitting with femoral component, especially the most proximedial calcar site restricted fitting, would be optimal for reducing stress shielding occurrence in cementless short, tapered-wedge stem THA. Thus, the ideal stem contact region should be considered during THA procedures in light of the reduction of stress shielding development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call