Abstract

In orthodontics, it is important to reduce the static friction between brackets and wires in order to enable easy tooth movement. The goal of the present study was to deposit diamond-like carbon (DLC), fluorine-doped DLC (F-DLC), and silicon-doped DLC (Si-DLC) coatings onto the slot surface in stainless steel orthodontic brackets using the plasma-enhanced chemical vapor deposition (PECVD) method and to characterize the frictional property between the coated bracket and wire under dry and wet conditions.In order to characterize DLC-, F-DLC- or Si-DLC-coated surface, XPS, the surface roughness and surface wettability of three deferent surfaces were measured. A nanoindentation test and a scratch test were performed in order to measure the hardness and adhesiveness, respectively, of DLC-, F-DLC- or Si-DLC coatings. The static friction between DLC-, F-DLC-, Si-DLC-coated brackets and 0.019×0.025-in stainless steel (SS) orthodontic wires was measured for several angulations under dry and wet conditions using a universal testing machine equipped with a custom-made friction-testing device.The F 1s or Si 2p and Si 2s peaks were observed for F-DLC (27.8at.%:F) or Si-DLC (26.8at.%:Si), respectively. There were no significant differences in the surface roughness of the slot surface of the bracket among the four types of specimens. The F-DLC was significantly hydrophobic and Si-DLC was significantly hydrophilic as compared to DLC. Doping the DLC with fluorine or silicon caused the surface hardness to decrease significantly.The results of the present study indicate that DLC, F-DLC and Si-DLC coatings provided a significant reduction in static friction. Among the coatings examined herein, F-DLC-coated bracket exhibited the significantly lowest static friction between the bracket and wire under the wet condition, which was lower than that under the dry condition. The F-DLC coating is highly promising as a means of promoting effective tooth movement and shortening treatment time for orthodontic treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call