Abstract

When a sinusoidal vibration was superimposed in parallel on the flow direction of a polymer melt being extruded through a capillary, the shear stress and shear rate of the polymer melt were analysed with a constant velocity type dynamic rheometer of capillary (CVDRC) devised by the authors. By measuring the instantaneous data of capillary entry pressure, capillary volume flux (or absolute velocity of piston rod) and their phase difference in a vibrating force field, it was found that the relationship between the pulsating amplitude value coefficient of entry pressure and that of volumetric flowrate was an approximate power series; the wall shear stress and wall shear rate of low density polyethylene (LDPE) melt extruded dynamically under various amplitudes and frequencies also exhibited a non-linear proportional relationship.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.