Abstract
Seafood is a valuable source of nutrients important for fetal development. However, seafood consumption is the main route of exposure to monomethyl mercury (MeHg+) for humans. MeHg+ is highly bioavailable and potentially adversely affects fetal neurodevelopment. MeHg+ exposure from fish consumption varies significantly by age and trophic level of fish consumed as well as the frequency and amount of fish consumed. This study investigates total Hg concentrations ([THg]) in hair segments of pregnant Mexican women in relation to (1) self-reported frequency of fish and shellfish consumption, (2) maternal trophic level and marine diet contributions, determined using hair carbon (C) and nitrogen (N) stable isotopes, and (3) relates [THg] to various hair advisory thresholds. We also examined whether variation in C and N isotope values is explained by self-reported frequency of fish and shellfish consumption. A significant proportion of hair samples had [THg] higher than suggested agency thresholds and, for women within the range of the various advisory thresholds (1–20 μg g−1), the specific statistic used and threshold applied are important considerations for assessing and communicating risk. Individuals enriched in 15N (δ15N values) had higher [THg] as did individuals that reported consuming fish and shellfish more frequently, suggesting that variation in [THg] can be explained by both consumer reported diet and diet as determined by C and N stable isotope assessment. However, at higher reported fish consumption levels the trophic level is maintained while [THg] is paradoxically lower. This suggests that THg exposure and assimilation are more complicated in higher fish frequency consumption categories. [THg] is more variable at the higher concentrations, possibly indicating some exposure to non-dietary Hg, heritable variations affecting Hg toxicodynamics, and BMI and tobacco exposure factors as outlined in our companion paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.