Abstract

A systematic analysis of the source duration (τ) and seismic moment (M0) for seismogenic earthquakes (MW 5.5–7.1) in the Taiwan region was completed by using a teleseismic P-wave inversion method. Irrespective of the source self-similarity, the M0–τ relationship derived in this study had a power-law form, namely M0 ∝ τ3, under the assumption that ΔσVr3 is constant following a circular fault model (Δσ: static stress drop; Vr: rupture velocity). For Taiwan’s earthquakes, the derived M0–τ relationship not only provides information to predict the source duration of large earthquakes, but also probes the rupture features of seismogenic earthquakes. That is, there are different rupture patterns for earthquakes, but the product ΔσVr3 remains nearly constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.